Dating between Body mass index and dining behavior, need strength otherwise personal regulation victory

Dating between Body mass index and dining behavior, need strength otherwise personal regulation victory

Our main goal was to identify associations (linear and quadratic) of BMI and characteristics of eating behavior (CR, DIS) with BOLD activation during volitional regulation of food craving. We tested separate regression models to individually assess the relationship of BMI, CR, DIS or regulation success and the respective regulation contrasts (REGULATE_TASTY>ADMIT_TASTY, REGULATE_TASTY>REGULATE_NOT_TASTY) including age (analyses of BMI, CR, DIS, regulation success) or age and BMI (analysis of BMI 2 ) as covariates. To assess the relationship of craving intensity and appetitive brain activity, separate regression models were tested on the respective craving contrasts (ADMIT_TASTY>REGULATE_TASTY, ADMIT_TASTY>ADMIT_NOT_TASTY). Please see Supplementary Table III for a summary of performed regression analyses. Second-level maps were thresholded voxelwise at P<0.001 and corrected for multiple comparisons at a cluster threshold of P<0.05 (family-wise error) for the whole brain.

Useful connectivity study

Functional connectivity was assessed by means of psychophysiological interaction (PPI) analysis. 28 Source regions were based on the above-mentioned regression analysis of BOLD activation and BMI, our primary research focus. Individual BOLD signal time series within 4-mm spheres surrounding detected peak coordinates were extracted (based on the inverted U-shaped relationship of BMI and REGULATE_TASTY>ADMIT_TASTY, please see ‘Results’ section and Table 2 for details). General linear models were estimated separately for every source region including the following regressors: Time course of the respective source region (physiological vector), a vector coding for the main effect (psychological vector; REGULATE_TASTY>ADMIT_TASTY; with the former term weighted as +1 and the latter one weighted as ?1), and the PPI term (element-by-element product between the time course of the source region and the vector coding the main effect). The models also included realignment parameters as nuisance regressors. Single-subject contrasts for the PPI regressors were calculated. In the second-level analysis, we aimed to identify regions whose functional click over here now connectivity was related to BMI (linear and quadratic) or characteristics of eating behavior (CR, DIS). Therefore, the PPI terms were regressed on these measures in separate multiple regression analyses. Second-level models also included the regressors of no interest mentioned under subsection ‘Analysis of BOLD response’. Second-level maps were thresholded voxelwise at P<0.001 and corrected for multiple comparisons at a cluster threshold of P<0.05 (family-wise error) for the whole brain. Clusters were considered to be significant at P<0.017 (Bonferroni adjustment to account for the number of investigated seeds). Please see Supplementary Table III for a summary of performed regression analyses.

Results

We observed an effective confident correlation out of Body mass index and DIS (R dos =0.285, P>0.001, Pearson correlation, Secondary Figure Ia). Multiple regression studies found a terrible connection out-of Body mass index 2 that have CR (R dos =0.151, P=0.038, covariate Body mass index; Additional Profile Ib), proving an upside down U-shaped dating. Desire strength failed to associate that have Bmi (R=?0.206, P=0.185, Pearson relationship). I receive a development off an awful relationship ranging from controls triumph and you will Body mass index (R=?0.295, P=0.055, Pearson relationship). Get a hold of Desk 1 having detailed statistics.

Procedures

To control its desire, most of the users (specifically obese volunteers) imagined the fresh bad long-name outcomes away from dining the depicted palatable restaurants. Really members transformed anywhere between other controls methods throughout this new experiment (pick Additional Desk IV getting information on means have fun with). When trained in order to acknowledge, all professionals thought preference otherwise texture of one’s presented food.

Relationships ranging from Committed craft and you can Body mass index, dinner behavior, craving power or subjective regulation triumph

Activity in a cluster comprising left putamen, amygdala and insula was nonlinearly (inverted U-shaped) related to BMI during volitional regulation devoid of craving influences (REGULATE_TASTY>ADMIT_TASTY; Table 2, Figure 2). Activation during regulation specific to hedonic food (REGULATE_TASTY>REGULATE_NOT_TASTY) was unrelated to BMI. We found no linear relationships with BMI. Craving intensity correlated positively with activity in the right hippocampus/amygdala during craving devoid of volitional regulatory influences (ADMIT_TASTY>REGULATE_TASTY; Table 2, Supplementary Figure X), but did not correlate with activation during craving specific to hedonic food (ADMIT_TASTY>ADMIT_NOT_TASTY). Neither subjective regulation success nor measures of eating behavior were significantly related to task-related BOLD activity. The above-mentioned results indicate some lateralization of the findings. However, when a less strict threshold was applied, bilateral BOLD activation of all mentioned regions associated with BMI and craving intensity was observed (relationship of BOLD and BMI: t-values thresholded at P<0.05, uncorrected; relationship of BOLD and craving intensity: t-values thresholded at P<0.001, uncorrected).

Leave a Comment

Your email address will not be published. Required fields are marked *